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Abstract. To ensure the alignment of advanced AI systems with human interests, AI needs social understanding
and cooperative intelligence to integrate well into society. But what are the consequences if more intelligent
actors (an advanced AI) are supposed to cooperate with less intelligent ones (an average human)? Here, we set
out to study how differences in agents’ intelligence impact collective cooperation by a combination of model
simulations inspired by complex systems science and behavioral experiments conducted with large-language
models.

1 Motivation
Artificial General Intelligence (AGI) refers to a type of artificial intelligence that can self-improve and thereby

exceed human capabilities in solving individual tasks significantly. There’s no guarantee that such advanced
AI systems will have the same cooperative capabilities as humans (Dafoe et al., 2021). Humanity’s collective
intelligence is built upon the extraordinary ability of humans to cooperate (Bowles and Gintis, 2011). To ensure
a desirable integration of advanced AI systems into human societies, it is, therefore, essential to improve our
understanding of the cooperative capabilities of self-learning agents.

Here, we focus on how differences in agents’ intelligence impact collective cooperation. In one plausible
scenario, more intelligent agents have an advantage over less intelligent ones. They could exploit less intelligent
agents to the disadvantage of those less intelligent agents. This scenario is highly undesirable and requires
interventions in the further development of advanced AI systems. In another plausible scenario, when the goals
of the intelligent agents depend on the less intelligent agents’ actions, the more intelligent agent would facilitate
cooperation for the benefit of both agents which is highly desirable.

There are many facets that can make one actor more intelligent than another. In this project, we focus
on the internal representation of social information. We use a combination of model simulations inspired by
complex systems science and behavioral experiments conducted with large-language models to investigate the
conditions that make one or the other scenario more likely.

2 Methods
Learning dynamics. For the model simulations, we resort to the framework of multi-agent reinforcement
learning (MARL). However, classical simulations of learning algorithms and advanced AI systems have significant
disadvantages for improving the understanding of the learning agent’s emergent collective behavior: they are
noisy, sometimes hard to explain, sample-inefficient, and computationally intense. We, therefore, employ an
approach to MARL inspired by complex system science and evolutionary game theory: collective reinforcement
learning dynamics (CRLD) (Barfuss, 2022, 2023). CRLD is characterized by two types of idealization. First,
CRLD uses dynamic learning equations as a lightweight model of the computationally intense reinforcement
learning update. Second, CRLD aims to understand the principles behind emergent collective behavior in
idealized, low-dimensional environments.

Environment. The problem of cooperation is most pronounced in social dilemmas. Here, individual incentives
and collective welfare are not aligned. Individuals profit from exploiting others or fear being exploited by others,
while at the same time, the collective welfare is maximized if all choose to cooperate (Dawes, 1980).

Here, we use the iterated (two-agent) Prisoner’s dilemma as our test bed. Because of its simplicity in carving
out the tensions between individual incentives and collective welfare, the effects discovered here are likely to
exist also in higher-dimensional social dilemmas. Specifically, a cooperator is someone who pays a cost, c, for
another individual to receive a benefit, b. A defector has no cost and does not deal out benefits (Nowak, 2006).
Cost and benefit are measured in terms of the agents’ utility (Schultz et al., 2017). Figure 1 shows the learning
dynamics at the iterated Prisoner’s dilemma when both agents learn a strategy which reacts to both agents’
actions of the last round (i.e., CC,CD,DC,DD).
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Figure 1: Learning dynamics in strategy phase space. There is a basin of attraction around mutual cooperation
when both agents cooperated in the last round (CC), indicating the viability of overall cooperation even when
benefits b exceed costs c (Barfuss and Meylahn, 2023). We will vary more and heterogeneous observation spaces.

LLM behavioral experiment. Besides the learning dynamic simulation, we investigate our scenarios also with
behavioral experiments using large language models (LLMs). In order to avoid testing variance brought up by
the intricacies of language, we use sentiment analysis tools in combination with tools from the field of survey
methodology (Shaughnessy et al., 2000) to prompt these language models. By adopting this method, we were
able to interact with the LLMs in a way that significantly reduced bias.

3 Conclusion
This marks the beginning of a three-month research project funded by the Impact Academy, whose results

we are eager to discuss at the Machine+Behavior Conference 2024.
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